
Building Cross Platform 
Web Services with 
Microsoft Technologies 
Using .NET Core
Sergey Barskiy, sergey@barskiy.com



.NET Core

Cross platform incarnation of .NET Framework
.NET Standard is the way to unify API across platforms and frameworks
Applications we can build with available tools



.NET Core

 Cross platform
 Performant
 Each app deploys its version 
 Highly modular
 Carries over the best part of C# and VB, such as async, generics, Linq
 Open source



Unified Api

 .NET Standard 2.0



Tooling is important

 Visual Studio
 Visual Studio for Mac
 Visual Studio Code



Understaning CLI Tools

DotNet.exe and its Purposes
DotNet.exe Invocation Structure
Using Key Commands Installed with DotNet.exe
https://docs.microsoft.com/en-us/dotnet/articles/core/tools/



Applications You Can Build

 Web Apps and Web Services
 Mobile Applications
 IoT Applications



EF Core Capabilities and Architecture 

Exposes data as set of objects, using DbContext and DbSet
Can update database structure via Migrations
Uses provider architecture



DbContext

Maintains state for changes
Converts state changes into queries
Provides access to RDBMS views, procedures and functions



DbSet<T>

Table Abstraction
Supports queries via Linq
Supports additions and deletions



Migrations

C# or VB.NET Code



Validation

Data Annotations
DbContext



Performance And Scalability

Async Code



Web Api

Builds on top of Web Api
Controllers with methods are services and actions
Inheriting from Controller is not required, but is helpful
Dependency injection everywhere, include EF



Web Api (cont.)

Action conventions and templates
Routes attributes are unified



Code

Setup new project
Add necessary references
Run to test
Create Entity Framework Code
Add Tests



Continue to learn

https://docs.microsoft.com/en-us/dotnet/core/


